If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x-6250=0
a = 1; b = 16; c = -6250;
Δ = b2-4ac
Δ = 162-4·1·(-6250)
Δ = 25256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25256}=\sqrt{4*6314}=\sqrt{4}*\sqrt{6314}=2\sqrt{6314}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{6314}}{2*1}=\frac{-16-2\sqrt{6314}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{6314}}{2*1}=\frac{-16+2\sqrt{6314}}{2} $
| 7(x+11)=182 | | -3/5y-5/2=-4/3 | | 6x=482 | | 12-10r-2=-42 | | 5.37=3x=+1.29 | | 1/4(x+12)=x | | 2+33x=12 | | 2(x+7)-8x=20 | | 2x,-3x=5x | | 10−9.7=f | | 56-2x=66-3x | | -x+8=-24+7x | | w+13=42 | | 14/3=2+x | | 8x=555 | | 11(7+x)=182 | | 10x-16+16x=36 | | 11(x-7)=182 | | 11(x+7)=182 | | -6-6x=2x+58 | | -3b=99 | | f-6=14.5 | | 16x-60=96-10x | | 12(s+8)=168 | | 9/16x+5/8x=3/4x+2 | | -20+r=45 | | 4f+(-21)+10f= | | 23.9+h=42.5 | | 3x+x‑2x=243 | | 6x+32-15=23 | | |-12x|=144 | | -4x+10=4x+(-6) |